Data Engineering on Google Cloud Platform

This class is intended for experienced developers who are responsible for managing big data transformations including:

  • Extracting, loading, transforming, cleaning, and validating data
  • Designing pipelines and architectures for data processing
  • Creating and maintaining machine learning and statistical models
  • Querying datasets, visualizing query results and creating reports

Prerequisite

  • Completed Google Cloud Fundamentals- Big Data and Machine Learning course #8325 OR have equivalent experience
  • Basic proficiency with common query language such as SQL
  • Experience with data modeling, extract, transform, load activities
  • Developing applications using a common programming language such Python
  • Familiarity with Machine Learning and/or statistics

Expected Duration
4 day

Description

This four-day instructor-led class provides you with a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a combination of presentations, demos, and hand-on labs, you will learn how to design data processing systems, build end-to-end data pipelines, analyze data and carry out machine learning. The course covers structured, unstructured, and streaming data.

Objective

1. Serverless Data Analysis with BigQuery

  • What is BigQuery
  • Advanced Capabilities
  • Performance and pricing

2. Serverless, Autoscaling Data Pipelines with Dataflow

3. Getting Started with Machine Learning

  • What is machine learning (ML)
  • Effective ML: concepts, types
  • Evaluating ML
  • ML datasets: generalization

4. Building ML Models with Tensorflow

  • Getting started with TensorFlow
  • TensorFlow graphs and loops + lab
  • Monitoring ML training

5. Scaling ML Models with CloudML

  • Why Cloud ML
  • Packaging up a TensorFlow model
  • End-to-end training

6. Feature Engineering

  • Creating good features
  • Transforming inputs
  • Synthetic features
  • Preprocessing with Cloud ML

7. ML Architectures

  • Wide and deep
  • Image analysis
  • Embeddings and sequences
  • Recommendation systems

8. Google Cloud Dataproc Overview

  • Introducing Google Cloud Dataproc
  • Creating and managing clusters
  • Defining master and worker nodes
  • Leveraging custom machine types and preemptible worker nodes
  • Creating clusters with the Web Console
  • Scripting clusters with the CLI
  • Using the Dataproc REST API
  • Dataproc pricing
  • Scaling and deleting Clusters

9. Running Dataproc Jobs

  • Controlling application versions
  • Submitting jobs
  • Accessing HDFS and GCS
  • Hadoop
  • Spark and PySpark
  • Pig and Hive
  • Logging and monitoring jobs
  • Accessing onto master and worker nodes with SSH
  • Working with PySpark REPL (command-line interpreter)

10. Integrating Dataproc with Google Cloud Platform

  • Initialization actions
  • Programming Jupyter/Datalab notebooks
  • Accessing Google Cloud Storage
  • Leveraging relational data with Google Cloud SQL
  • Reading and writing streaming Data with Google BigTable
  • Querying Data from Google BigQuery
  • Making Google API Calls from notebooks

11. Making Sense of Unstructured Data with Googles Machine Learning APIs

  • Googles Machine Learning APIs
  • Common ML Use Cases
  • Vision API
  • Natural Language API
  • Translate
  • Speech API

12. Need for Real-Time Streaming Analytics

  • What is Streaming Analytics
  • Use-cases
  • Batch vs. Streaming (Real-time)
  • Related terminologies
  • GCP products that help build for high availability, resiliency, high-throughput, real-timestreaming analytics (review of Pub/Sub and Dataflow)

13. Architecture of Streaming Pipelines

  • Streaming architectures and considerations
  • Choosing the right components
  • Windowing
  • Streaming aggregation
  • Events, triggers

14. Stream Data and Events into PubSub

  • Topics and Subscriptions
  • Publishing events into Pub/Sub
  • Subscribing options: Push vs Pull
  • Alerts

15. Build a Stream Processing Pipeline

  • Pipelines, PCollections and Transforms
  • Windows, Events, and Triggers
  • Aggregation statistics
  • Streaming analytics with BigQuery
  • Low-volume alerts

16. High Throughput and Low-Latency with Bigtable

  • Latency considerations
  • What is Bigtable
  • Designing row keys
  • Performance considerations

17. High Throughput and Low-Latency with Bigtable

  • What is Google Data Studio
  • From data to decisions

SUBSCRIPTION COST


$2,495.00

Select Course Options

 

NEED HELP OR NOT SURE?